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ABSTRACT

We investigate the memorization capacity of multi-layer perceptrons (MLPs) and
decoder-only transformers on synthetic random-mapping tasks. Given a fixed vo-
cabulary, sequence length, and total number of model parameters, we examine
how varying different model features—such as depth, width, and attention mech-
anisms—affects the model’s ability to memorize. The memorization threshold is
defined as the maximum number of random sequence mappings the model can
learn with perfect accuracy. MLPs are applied to sequence-to-sequence learning,
and decoder-only transformers are tasked with autoregressive learning.
Our results show that MLPs leverage width, while transformers depend on multi-
head attention to improve memorization. We find that MLPs achieve a much
higher memorization threshold under a similar number of total parameters.

1 INTRODUCTION

In this project, we explore the memorization capacity of neural architectures, specifically, trans-
formers and MLPs, on synthetic random mappings. We focus on autoregressive and sequence-to-
sequence tasks with fixed-size vocabularies and random bijective mappings to study pure memoriza-
tion. Our goal is to understand how architectural parameters like width, depth, and attention affect a
model’s ability to memorize random mappings and how memorization scales with model size.

2 RELATED WORKS

Understanding the memorization capacity of neural networks has become an area of focus within
deep learning research, revealing both the limits of model expressivity and also potential risks such
as overfitting and privacy leakage.

2.1 WHY MEMORIZATION MATTERS

Early work has highlighted that over-parameterized models, such as large transformers and MLPs,
can memorize substantial amounts of training data, in some cases to the point of perfect interpola-
tion on random labels. This sparks concerns in overfitting, where memorization would undermine
generalization to unseen data Zhang et al. (2017), and privacy leakage, where memorized sensitive
data could be exposed Carlini et al. (2021).

Despite these drawbacks, memorization is surprisingly not always detrimental. Feldman (2020)
showed that memorization can enhance generalization in settings with long-tailed data distributions,
where rare examples are vital to model performance. Furthermore, studies of double descent, such
as Belkin et al. (2019) and Nakkiran et al. (2020), revealed that models that cross the interpolation
threshold, memorizing all training points, would often generalize better with further overparameter-
ization.
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2.2 INFORMATION-THEORETIC PERSPECTIVES

Recent work provides deeper insight into how many bits of information a network can store. Park
et al. (2021) and Vardi & Shamir (2022) demonstrated that depth dramatically boosts memorization,
showing that deep MLPs can memorize N examples using only O(N2/3) or even Õ(

√
N)

parameters, given that the weights have high precision. This introduces a bit-complexity tradeoff: a
network’s memorization capacity depends on both the number of parameters and the number of bits
per parameter.

In terms of transformers, Kim et al. (2023) extended upon these findings, proving that transformers
can memorize N sequence mappings using around O(d + n +

√
nN) parameters, given that d is

the embedding size and n is the sequence length. Empirical work has shown that these theoretical
predictions align closely with real transformer behavior, suggesting that transformers are highly
parameter-efficient memorization machines.

2.3 THEORETICAL BOUNDS OF TRANSFORMER MEMORIZATION CAPACITY

Mahdavi et al. (2024) theoretically investigated the role of attention heads and how they affect
the number of sequences the Transformer can memorize. They found that an attention layer with
H heads, dimension d, and context size n < d, with Θ(Hd2) parameters, can memorize Ω(Hn)
examples. Mahdavi further finds that each attention head memorizes a different subset of example
sequences, dividing memorization capacity among attention heads. This implies that increasing the
number of attention heads linearly increases the memorization capacity of a Transformer.

On the other hand, Kajitsuka & Sato (2025) establish a theoretical lower bound for the
memorization capacity of Transformers. They find that in the sequence-to-sequence setting,
Õ(

√
nN) parameters are sufficient for memorizing N input sequences of length n. However in

the next-token prediction setting, Õ(
√
N) parameters are needed. This provides a useful refer-

ence to assess how efficiently a Transformer utilizes its parameter constraint to memorize sequences.

2.4 EMPIRICAL EVIDENCE AND PRACTICAL IMPLICATIONS

Arpit et al. (2017) found that neural networks first learn patterns and only later memorize ex-
ceptions/noise, while Power et al. (2022) explored grokking, where memorization unexpectedly
transitions into true generalization during extended training. These results highlight that memoriza-
tion is dynamic and staged, rather than uniform.

Lu et al. (2024) studied the knowledge capacity of LLMs and found that the knowledge ca-
pacity of an LLM has a linear and negative exponential law relationship with model size and
training epochs. This suggests that trained Transformers may not necessarily be memorizing
training data but also generalizing unseen data.

Memorization raises serious privacy concerns in practice. Carlini et al. (2021; 2023) demon-
strated that LLMs like GPT-2 can reproduce verbatim training data, and that memorization risk
scales with model size and training data redundancy. This has motivated further research into
privacy-preserving training methods.

We situate our work within this literature by focusing on controlled synthetic random map-
ping tasks to isolate pure memorization capacity. Unlike studies that focus on naturalistic data, our
setup removes semantic patterns, enabling a clear measurement of the memorization threshold as
a function of model size, depth, and architecture type. By comparing MLPs and transformers, we
extend upon prior work from Park et al. (2021) and Kim et al. (2023), empirically testing scaling
predictions in sequence-to-sequence tasks.
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3 METHODOLOGY

3.1 MODEL ARCHITECTURES & LEARNING TASKS

The two model architectures explored are multi-layer perceptrons (MLPs) and decoder-only trans-
formers. The following explains each model’s architectural features and the task each one analyzes.

3.1.1 MULTI-LAYER PERCEPTRONS (MLPS) & SEQ2SEQ

Although MLPs are not typically described as sequence learning models, this task can be interpreted
as a form of sequence-to-sequence learning, where the goal is to map one fixed-length sequence to
another. We chose to analyze MLPs because their architecture makes them inherently well-suited
for dictionary tasks. MLPs do not take into account any sequential dependencies or semantic mean-
ing (unlike transformers); instead, they treat the input as one vector and apply a series of nonlinear
transformations to learn the expected output. This makes them effective at learning random map-
pings such as our task. Additionally, they can learn to sparsely activate certain neurons, boosting
their accuracy in memorization tasks.

The MLP has three parameters, the number of hidden layers (num layers), the dimension of the
hidden layer (hidden size), as well as the dimension of the input and output layers (these are always
equal and are d modelMLP ). The input to the MLP is a flattened, one-hot vector representing a
sequence of 10 tokens, where our vocabulary size is 10. Therefore, d modelMLP is held constant
where d modelMLP = |V | ∗ seq len = 10 ∗ 10 = 100.
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Figure 1: Visualization of the MLP (Multi-Layer Perceptron) architecture. The model takes
a flattened one-hot input of size (batch size, seq len × vocab size) and passes it through mul-
tiple fully connected layers with ReLU activations. The final output is reshaped back into
(batch size, seq len, vocab size) logits. This simple feedforward network is used as a baseline for
memorization capacity experiments.
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3.1.2 DECODER-ONLY TRANSFORMERS & AUTOREGRESSIVE LEARNING

We only analyze decoder-only transformers (as opposed to encoder-decoder transformers) to isolate
and better understand the behavior of the decoder. The encoder introduces additional parameters to
process and embed the input sequence, which can obscure the effects of core architectural features
like depth and attention within the decoder itself. Therefore, by using a decoder-only model, we limit
the task to autoregressive learning, where the model predicts the next token using the previously
generated tokens. Using causal attention, model learns to predict the next token in a sequence
without future context, making it easier to analyze the contributions of key architectural features.

However, it is important to note that we do choose to embed our one-hot vectors in the token em-
bedding dimension d modelTRF before passing it as an input to the transformer. This was done for
multiple reasons. In most literature, dmodel, the dimension of the input tokens, is equivalent to dattn,
the attention output. Therefore, without this embedding step, d modelTRF = |V | = 10 = dattn,
significantly limiting the expressive capabilities of our transformer. Empirically, we found that the
results for when dmodel = dattn are quite poor. While we debated letting dattn be different, we
decided against it in order to maintain consistency when comparing to previous literature.

Our decoder-only transformer has 4 parameters: the token embedding dimension (d modelTRF ), the
number of attention heads (num heads), the number of layers (num layers), the feedforward layer
dimension of the MLP (dff ).

Figure 2: Visualization of the Transformer Decoder model used in our experiments.
The model consists of an embedding layer, positional encoding, and multiple stacked
TransformerDecoderLayer blocks. The architecture processes input sequences of token in-
dices with autoregressive masking (causal mask) and outputs token-level logits for each position.
Green blocks represent learnable layers, while blue blocks show operations like mask generation
and tensor reshaping.

3.2 DATASET GENERATION

Given a dataset size subset size, we generate synthetic datasets with fixed sequence length seq len =
10 and vocabulary V = {0, 1, . . . , |V | − 1} where the vocabulary size |V | = 10. The dataset size is
equivalent to the number of generated mappings. To generate each sequence, we randomly choose
seq len tokens from the vocabulary. Once all of the input sequences are generated, we check that
there are no repeated sequences within this set to ensure a bijective mapping. The same is done for
all label sequences. Finally, we randomize the orderings of the label sequences to ensure a random
(un-learnable) mapping function from input to label sequences. This is done because the mapping
is done index-wise between the sets of sequences.
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3.3 THRESHOLD SEARCH

In order to determine the memorization threshold–the maximum number of mappings a given model
can memorize–we perform a binary search on the entire search space of all possible mappings of
size Slow to Shigh, where Shigh is a known upper bound that the model cannot memorize and Slow

is a known lower bound that the model can memorize.

Memorization failure occurs if, on a given epoch, perfect accuracy is not achieved and any of the
following: 1) the maximum number of epochs (500) was reached or 2) validation loss plateaus for
the last three epochs (plateau is defined as no improvement by at least 0.0001 for the last 3 epochs).
We keep track of whether the maximum number of epochs was reached using a flag and re-run the
data on a higher epoch count if necessary.

Important to note is that the training, validation, and test datasets are all the same because we are
examining memorization and not generalization.

In order to determine Slow, Shigh, we do the following bounds search:

1. Initialize Shigh as 1.

2. Train model on subset size = Shigh random mappings.

3. If model achieves perfect accuracy, multiply Shigh by a factor of 2 and repeat steps 2-3. If
model fails, set Slow = Shigh/2 and end search.

Once the bounds are determined, we apply a binary search to identify the exact memorization thresh-
old:

1. Initialize Slow, Shigh as dataset size bounds.

2. Train the model on subset size = (Slow + Shigh)//2 random mappings.

3. If accuracy < 100%, lower Shigh; if accuracy = 100%, raise Slow.

4. Repeat steps 2-3 until convergence.

We repeat runs to account for noisy results. Models are trained using the Hugging Face Trainer with
AdamW optimizer, batch size of 32, and weight decay of 0.01. For the MLP, we use a learning
rate of 1e-2, while 5e-4 is used for the transformer. These parameters were decided after thorough
experimentation.

3.4 METHODOLOGICAL SHIFT: FROM INITIAL APPROACH TO CURRENT DESIGN

Since our presentation, we’ve changed our approach to various methodology features: model archi-
tecture, dataset generation, and threshold search.

Model Architecture: Our previous architecture kept all model parameters constant while only vary-
ing one of them. However, the analysis was less interesting because the total number of model pa-
rameters was increasing which is known to be strongly correlated with model performance. Now,
we keep the total number of parameters constant while varying the relationship between pairs of
parameters–such as number of layers and the dimension of the feedforward layer in the MLP.

Dataset Generation: Previously, we divided the vocabulary into input and label tokens, where only
input tokens could be used to generated input sequences and vice versa. However, this made our
notation and definition of memorization more complex. Therefore, we have expanded to a unified
vocabulary approach for input and label sequences.

Threshold Search: Before, our binary search bounds were related to the size of the vocabulary our
model was trained on. Therefore, on each iteration of the search, a new vocabulary and sequence
mappings were generated. To maintain consistency and simplify our approach, we now keep the
vocabulary size constant and much smaller, with a longer sequence length.
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3.5 PARAMETER SELECTION

3.5.1 MULTI-LAYER PERCEPTRONS (MLPS)

In order to determine the parameter settings for hidden size and num layers, we solve for all pos-
sible hidden size for all num layers ∈ {0, 1, 2, 3, 4} while maintaining a constant total number of
parameters. Let N be the number of total parameters, dhs = hidden size, dmodel = d modelMLP ,
L = num layers:

N =

{
d2model + dmodel if L = 0

2dmodeldhs + (L− 1)d2hs + Ldhs + dmodel if L > 0

Using the python library scipy.optimize, for a given N, we solve the equation for all num layers ∈
{0, 1, 2, 3, 4} to find the correct hidden size that maintains that constant number of parameters. We
repeat this for all N ∈ {10000, 30000, 90000}. The scaling of N was decided using the paper Kim
et al. (2023); Vardi & Shamir (2022) as reference.

3.5.2 TRANSFORMER

To measure how different transformer architectural parameters affect memorization capacity, we
train numerous transformer models with varying parameters. Each trained Transformer model
varies the number of layers, hidden size, feedforward dimension, and number of attention heads,
while establishing a parameter constraint that the total number of parameters is approximately
10,000. This allows us to compare how each model efficiently uses its fixed number of model
parameters to memorize sequences.

We vary transformer architecture across a series of models by adjusting model depth and
width. We define depth as the number of layers nlayers and width as the hidden size dmodel,
feedforward dimension dff, and attention output size dattn. To keep the total number of parameters
constant, we increase depth while appropriately decreasing width at the correct scale.

There are several ways to decrease the width. Prior literature decrease the width while main-
taining the following ratio: dmodel = dattn = dff/4 Vaswani et al. (2017); Devlin et al. (2019);
Kaplan et al. (2020); Hoffmann et al. (2022). However, we adopt the design introduced by
Petty et al. (2024) where we vary dff while holding dmodel = dattn constant. This way, any differ-
ences in Transformer memorization capacity is truly due to depth and not any attention mechanisms.

We identify model parameters by the following method. We start with initial values of (n0
layers, d

0
ff)

that satisfy N(n0
layers, d

0
ff) = p where p is the parameter constraint and N(nlayers, dff) is the total

number of parameters. We find values l, f(l) such that N(n0
layers, d

0
ff) = (n0

layers + l, d0ff − f(l)).
As a result, if we add l layers, we decrease the the feedforward dimension by f(l). We round the
calculated value of f(l) accordingly to give dff an integer value and train a model with the updated
parameters.

4 RESULTS

We report memorization thresholds as a function of hidden size, depth, and attention, comparing
MLPs and transformers. We analyze width vs. depth trade-offs and the role of attention in sequence
memorization without semantics Park et al. (2021); Vardi & Shamir (2022); Kim et al. (2023).
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5 MLP RESULTS AND INSIGHTS

We evaluate the memorization capacity of multi-layer perceptrons (MLPs) across three different total
parameter budgets: 10,000, 30,000, and 90,000 parameters. For each budget, we systematically vary
the hidden size and number of layers to study how width and depth trade off under a fixed parameter
constraint.

5.1 OBSERVED TRENDS ACROSS PARAMETER BUDGETS

Our results (Tables 1–3) show several consistent patterns:

• Single-layer MLPs (Depth = 1) consistently achieve the highest memorization threshold
within each parameter budget. For example, at 10,000 parameters, an MLP of depth 1
reaches a mean threshold of 467, while deeper models with the same budget achieve lower
thresholds.

• Adding depth, or more layers, reduces memorization capacity when the total parameter
count is held constant. For example at 30,000 parameters, the threshold drops from 1728
with 1 layer to just 118 with 4 layers. Similarly, at 90,000 parameters, there is a drop from
3648 with a single layer to only 1 with over 4 layers.

• Models with zero hidden layers (Depth = 0) end up plateauing at a threshold of 224 across
all parameter budgets, which is expected behavior as these models behave like a direct
linear map with no hidden transformation capacity.

5.2 WIDTH VS. DEPTH TRADEOFF

These results suggest that width plays a dominant role in MLP memorization when parameter count
is fixed. Increasing the number of layers (depth) requires a corresponding reduction in hidden size
(width) to stay within the parameter budget, which sharply reduces memorization capacity. This
aligns with theoretical work (e.g., Park et al. (2021); Vardi & Shamir (2022)) showing that width is
critical for memorization in MLPs, and that depth alone cannot compensate if the width shrinks too
much.

Interestingly, the drop-off is nonlinear: while increasing from 1 to 2 layers preserves some mem-
orization (e.g., 995 at 30k params), further depth increases lead to steep declines (e.g., 256 at 3
layers, 118 at 4 layers). This suggests a sweet spot where shallow depth might offer minor gains
(e.g., through additional expressivity) before the penalty of reduced width dominates.

5.3 UNEXPECTED RESULTS

One intriguing result is the increased variance at deeper settings. For instance, at 10k parameters,
the 4-layer MLP shows a large standard deviation (41.2), reflecting unstable or inconsistent memo-
rization performance across runs. This could be due to optimization challenges: deeper MLPs may
suffer from vanishing gradients or difficulty converging when width is extremely constrained Arpit
et al. (2017); Zhang et al. (2017). We were not able to explore this fully due to compute and time
constraints, but this would be an interesting area of exploration.

Another notable observation is that even large parameter budgets (e.g., 90k) do not save deep MLPs
from collapse in memorization capacity. At 5 layers, the memorization threshold remains extremely
low (1 sequence memorized), highlighting that overparameterization alone cannot overcome the
bottleneck created by low width.

5.4 COMPARISON TO PRIOR LITERATURE

These empirical findings align with theoretical predictions (e.g., Vardi & Shamir (2022)) that depth
can amplify memorization only when paired with sufficient width. The sharp performance collapse
at high depth suggests that, under a fixed parameter budget, width is the dominant factor for memo-
rization on sequence-to-sequence tasks.
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Figure 3: Memorization threshold vs. depth for MLPs across different parameter budgets (10k,
30k, 90k). Each line shows that as depth increases, memorization capacity sharply decreases, with
depth-1 models consistently achieving the highest thresholds. This figure highlights the width vs.
depth trade-off: deeper models require reduced hidden size to stay within a fixed parameter budget,
which limits their memorization ability.

Our results also reinforce prior work (e.g., Arpit et al. (2017)) showing that MLPs memorize ef-
fectively when the architecture can create a large enough expressive capacity (wide layers), while
purely adding depth without adequate width does not meaningfully improve memorization.

In summary, MLPs excel at memorization when their architecture allows for large hidden layers,
even if depth remains shallow. This reflects the fundamental limitation of MLPs for memorization
under tight parameter budgets: depth alone is insufficient without ample width.

Table 1: MLP Results (10,000 parameters)
hidden size num layers Mean Threshold Median Threshold Std. Dev.

0 0 224 224 0
49 1 467 467 0
41 2 416 416 0
36 3 256 256 0
33 4 21.6 1 41.2
30 5 20.6 33 15.19

Table 2: MLP Results (30,000 parameters)
hidden size num layers Mean Threshold Median Threshold Std. Dev.

0 0 224 224 0
149 1 1728 1728 0
99 2 995 995 0
82 3 256 256 0
71 4 118 118 0
65 5 16.8 2 18.13
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Table 3: MLP Results (90,000 parameters)
hidden size num layers Mean Threshold Median Threshold Std. Dev.

0 0 224 224 0
447 1 3648 3648 0
215 2 1392 1392 0
167 3 546 546 0
142 4 1 1 0
126 5 1 1 0

6 TRANSFORMER RESULTS AND INSIGHTS

We evaluate the memorization capacity of transformer architectures across three different total pa-
rameter counts: 32,000, 64,000, and 128,000 parameters. For each total, we systematically vary the
feedforward dimension and and number of layers, while keeping the hidden size constant (model-
ing the work of Petty et al. (2024)). This is done in order to maintain the target parameter count.
Moreover, because the number of attention heads does not affect the total parameter count, we ex-
perimented with a wide variety such that the hidden size was divisible by the number of heads.

6.1 OBSERVED TRENDS ACROSS PARAMETER BUDGETS

Our results (Tables 4–6) reveal several consistent trends:

• Within each total parameter count, increasing the number of attention heads at fixed depth
generally increases memorization thresholds. For instance, at 64,000 parameters and a
depth 1 (num layers = 1), memorization improves from 18 mappings (1 head) to 77 map-
pings (32 heads).

• Increasing depth from 1 to 2 or 3 layers leads to a modest reduction in memorization thresh-
old, but the decline is not as sharp as in MLPs. At 128,000 parameters, a 2-layer transformer
with 32 heads reaches a threshold of 32, compared to 31.2 at 1 layer—demonstrating rela-
tive robustness to depth.

• To stay within the total parameter count, deeper models have more narrow feedforward
layers (dff = 175 for 3 layers vs. dff = 1550 for 1 layer at 128k params), but transformers
maintain a substantive memorization capacity even with a more narrow width, unlike MLPs
which fail to maintain a baseline threshold.

6.2 ATTENTION, WIDTH, AND DEPTH TRADEOFF

A key feature in transformers is that they benefit from multi-head attention in longer sequences. With
a sequence length of 10, this is demonstrated as the average memorization threshold increases from
19.4 to 64 for a model with 1 compared to 16 attention heads (where dff = 256, num layers = 2,
hidden dim = 64 as shown in Table 5). While the width nor depth of the model doesn’t necessarily
change, we see how attention heads enable greater expressivity and memorization capabilities in
transformers. We were somewhat surprised by this result because our generated sequences do not
contain any semantic meaning, therefore there isn’t necessarily a specific feature that we expect the
heads to learn. Moreover, the embedding dimension of the heads significantly reduce: for 1 total
head, it has a dimension of 64, while for 16 heads, each one has a dimension of only 4. Although
each head’s expressivity is limited when there are more heads in the model, this is a worthy tradeoff
for performance.

As for a direct comparison between width and depth, we see that increasing depth (num layers) while
reducing width (dff ) does not have a significant difference when compared to decreasing depth
(num layers) and increasing width (dff ). This is shown in Table 6.4 for a total of 180k parameters,
where the average threshold changes by 2 between a model with dff = 1550, num layers = 1
versus a model with dff = 512, num layers = 2. Similarly in a model with 64k total parameters,
moving from 1 layer (77 threshold at 32 heads) to 3 layers (41 threshold at 32 heads) still retains a
significant portion of memorization.
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Figure 4: Memorization threshold vs. number of attention heads for transformers (fixed depth =
1) across different parameter budgets (32k, 64k, 128k). The results show a roughly linear scaling
trend, with higher head counts consistently yielding better memorization capacity.

6.3 UNEXPECTED RESULTS

There were a few results that surprised us:

• In some cases (such as in a model with 128k params, depth 1), increasing heads beyond
32 does not boost memorization any further. In fact, performance often plateaus or dips
(as seen in models with 32 heads vs. 64 heads which have thresholds of 31.2 and 32,
respectively). This suggests possibly diminishing returns when splitting attention heads
too finely.

• We observe larger standard deviations in deeper models. For example, the standard de-
viation is 18.12 at 32 heads, 3 layers, 128k parameters, which may reflect optimization
challenges or sensitivity to initialization when both depth and head count are high.

• When comparing the number of total parameters, as seen in Figure 4, we witness how larger
models (ones with higher total parameter counts) do not necessarily correlate with better
performance. It seems that a model with 64k parameters performs better than that of with
128k parameters, especially with an increased number of attention heads.

6.4 COMPARISON TO MLPS AND PRIOR LITERATURE

Transformers demonstrate a fundamentally different scaling pattern than MLPs. While MLPs rely
heavily on hidden size for memorization (with a heavy impact on performance as depth increases),
transformers show resilience: attention heads can help compensate for narrower dff sizes even at
greater depths. This supports prior theoretical work Kim et al. (2023); Vardi & Shamir (2022) sug-
gesting that multi-head attention improves the capacity to memorize arbitrary sequences, especially
when models are restricted by the total number of parameters.

Furthermore, transformers achieve memorization thresholds comparable to or exceeding MLPs of
similar size (such as a threshold of 77 at 64k params with 32 heads versus 1728 for MLPs at 30k
params). However, they achieve this with smaller d ff sizes, leveraging the power of attention
rather than pure width.

In summary, transformers perform poorly compared to MLPs on memorization tasks when total
parameter count is fixed, suggesting that attention may not be an efficient use of parameters in
this task. While attention helps with generalization and learning long-range dependencies, it seems
to hurt performance when the goal is just to memorize random mappings. MLPs, despite being
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simpler, allocate parameters more similarly to storing information, giving them an advantage under
a constrainted parameter count.

Table 4: Transformer Results (32,000 parameters)
hidden size d ff num heads num layers Mean Threshold Median Threshold Std. Dev.

32 380 1 1 11.8 12 0.45
32 380 2 1 16.4 16 0.89
32 380 4 1 18 18 0
32 380 8 1 17 17 0
32 128 1 2 12.4 12 1.82
32 128 2 2 16.4 16 0.55
32 128 4 2 17.6 17 2.51
32 128 8 2 17 17 0.71
32 40 1 3 9.2 11 4.02
32 40 2 3 12.4 12 2.88
32 40 4 3 16.8 17 0.45
32 40 8 3 17.2 17 1.79

Table 5: Transformer Results (64,000 parameters)
hidden size d ff num heads num layers Mean Threshold Median Threshold Std. Dev.

64 768 1 1 18 16 6.00
64 768 2 1 22.4 20 3.29
64 768 4 1 57.4 63 7.67
64 768 8 1 37.2 31 11.28
64 768 16 1 31 31 0
64 768 32 1 77 77 0
64 256 1 2 19.4 17 7.57
64 256 2 2 28.6 27 2.19
64 256 4 2 29 24 11.18
64 256 8 2 32 32 0
64 256 16 2 64 64 0
64 256 32 2 57.4 64 14.76
64 83 1 3 6 4 4
64 83 2 3 24.2 24 1.10
64 83 4 3 24.8 26 2.68
64 83 8 3 27 27 6.04
64 83 16 3 48 48 11.42
64 83 32 3 41 41 0
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Table 6: Transformer Results (128,000 parameters)
hidden size d ff num heads num layers Mean Threshold Median Threshold Std. Dev.

128 1550 1 1 22.8 24 1.79
128 1550 2 1 24.6 23 3.58
128 1550 4 1 49 49 0
128 1550 8 1 22 22 0
128 1550 16 1 32 32 0
128 1550 32 1 31.2 32 1.10
128 1550 64 1 31 31 0
128 512 1 2 16.6 16 3.29
128 512 2 2 16.6 20 7.60
128 512 4 2 20 20 0
128 512 8 2 23 21 4.47
128 512 16 2 30 30 0
128 512 32 2 32 32 0
128 512 64 2 42.4 42 13.07
128 175 1 3 16 16 0
128 175 2 3 20 20 0
128 175 4 3 18.8 17 2.49
128 175 8 3 26.6 25 4.10
128 175 16 3 24 23 1.73
128 175 32 3 30.6 23 18.12
128 175 64 3 31 31 0

7 CONCLUSION AND FUTURE WORK

We have discussed the following key takeaways for MLPs and transformers.

For MLPs, width has a key role in memorization capabilities. At a fixed parameter count, the widest
and shallowest models consistently perform the best. In particular, MLPs with a depth of 1 outper-
form deeper configurations. As depth increases and width becomes more narrow, optimization be-
comes more difficult, leading to higher variance and sudden drops in memorization accuracy. These
findings align with theoretical scaling laws and emphasize the idea that memorization is sensitive to
width constraints.

Transformers, however, show a much different behavior. Adding more attention heads at a fixed
depth significantly improves memorization, even when total parameter count is constrained. Inter-
estingly, the performance of transformers does not degrade as quickly as MLPs when decreasing
width and increasing depth, suggesting that a narrow width is less harmful when paired with atten-
tion mechanisms. Moreover, the benefits of increasing the number of attention heads are nonlinear:
performance tends to plateau or even worsen beyond certain thresholds, such as with 32 heads or a
total parameter count of 64k. Overall, while attention contributes to better memorization in specific
configurations, transformers remain less effective than MLPs in pure memorization tasks, especially
when dealing with random dictionary mappings. This suggests that attention mechanisms may be
unnecessary in pure memorization tasks with random dictionary mappings.

For future work, we plan to explore a more traditional transformer configuration by holding the
feedforward dimension dff fixed at four times the hidden dimension (dff = 4 ∗ d model). This
design is common in other literature, and it may help to examine how scaling the hidden size affects
understanding memorization and parameter trade-offs.
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A APPENDIX

Please see this link for access to the code used to run the MLP and transformer experiments (down-
load this as a pdf and click on the word link).
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